Auteur : Mission Villani
Type de publication : Rapport
Date de publication : Mars 2018
Lien vers le document original
Introduction
Définir l’intelligence artificielle n’est pas chose facile. Depuis ses origines comme domaine de recherche spécifique, au milieu du XXe siècle, elle a toujours constitué une frontière, incessamment repoussée. L’intelligence artificielle désigne en effet moins un champ de recherches bien défini qu’un programme, fondé autour d’un objectif ambitieux : comprendre comment fonctionne la cognition humaine et la reproduire ; créer des processus cognitifs comparables à ceux de l’être humain. Le champ est donc naturellement extrêmement vaste, tant en ce qui concerne les procédures techniques utilisées que les disciplines convoquées : mathématiques, informatiques, sciences cognitives… Les méthodes d’IA sont très nombreuses et diverses (ontologique, apprentissage par renforcement, apprentissage adversarial, réseaux de neurones…) et ne sont pas nouvelles : beaucoup d’algorithmes utilisés aujourd’hui ont été développés il y a plusieurs dizaines d’années.
L’intelligence artificielle désigne en effet moins un champ de recherches bien défini qu’un programme, fondé autour d’un objectif ambitieux : comprendre comment fonctionne la cognition humaine et la reproduire
Depuis la conférence de Dartmouth de 1956, l’intelligence artificielle s’est développée, au gré des périodes d’enthousiasme et de désillusion qui se sont succédées, repoussant toujours un peu plus les limites de ce qu’on croyait pouvoir n’être fait que par des humains. En poursuivant son projet initial, la recherche en IA a donné lieu à des vrais succès (victoire au jeu d’échecs, au jeu de go, compréhension du langage naturel…) et a nourri largement l’histoire des mathématiques et de l’informatique : combien de dispositifs que nous considérons aujourd’hui comme banals étaient à l’origine une avancée majeure en IA – une application de jeux d’échecs, un programme de traduction en ligne… ?
Du fait de ses ambitions, qui en font un des programmes scientifiques les plus fascinants de notre époque, la discipline de l’IA s’est toujours développée de concert avec les imaginaires les plus délirants, les plus angoissants et les plus fantastiques, qui ont façonné les rapports qu’entretient le grand public avec l’IA mais également ceux des chercheurs eux-mêmes avec leur propre discipline. La (science) fiction, les fantasmes et les projections collectives ont accompagné l’essor de l’intelligence artificielle et guident parfois ses objectifs de long terme : en témoignent les productions fictionnelles abondantes sur le sujet, de 2001 l’Odyssée de l’espace, à Her en passant Blade Runner et une grande partie de la littérature de science-fiction. Finalement, c’est probablement cette alliance entre des projections fictionnelles et la recherche scientifique qui constitue l’essence de ce qu’on appelle l’IA. Les imaginaires, souvent ethno-centrés et organisés autour d’idéologies politiques sous-jacentes, jouent donc un rôle majeur, bien que souvent négligé, dans la direction que prend le développement de cette discipline.
Le développement de l’IA se fait dans un contexte technologique marqué par la mise en données du monde
L’intelligence artificielle est entrée, depuis quelques années, dans une nouvelle ère, qui donne lieu à de nombreux espoirs. C’est en particulier dû à l’essor de l’apprentissage automatique. Rendues possibles par des algorithmes nouveaux, par la multiplication des jeux de données et le décuplement des puissances de calcul, les applications se multiplient : traduction, voiture autonome, détection de cancer… Le développement de l’IA se fait dans un contexte technologique marqué par la « mise en données » du monde (datafication), qui touche l’ensemble des domaines et des secteurs, la robotique, la blockchain, le supercalcul et le stockage massif. Au contact de ces différentes réalités technologiques se jouera sûrement le devenir de l’intelligence artificielle.
Contrairement aux dernières grandes périodes d’emballement de la recherche en intelligence artificielle, le sujet a très largement dépassé la seule sphère scientifique et est sur toutes les lèvres. Les investissements dans la recherche et dans l’industrie atteignent des sommes extraordinaires, notamment en Chine. Les responsables politiques du monde entier l’évoquent dans les discours de politique générale comme un levier de pouvoir majeur : l’emblématique interview à Wired de Barack Obama en octobre 2016 montrait que ce dernier avait bien compris l’intérêt de faire de l’avance américaine en intelligence artificielle un outil redoutable de soft power. Le Président russe Vladimir Poutine a quant à lui affirmé que « celui qui deviendra le leader dans ce domaine sera le maître du monde », comparant l’intelligence artificielle aux technologies nucléaires. S’il s’agissait vraisemblablement pour lui de compenser le retard de la Russie en matière d’intelligence artificielle par un discours musclé sur le sujet, cette affirmation est révélatrice de l’importance géostratégique prise par ces technologies. Dans la mesure où les chaînes de valeur, surtout dans le secteur numérique, sont désormais mondiales, les pays qui seront les leaders dans le domaine de l’intelligence artificielle seront amenés à capter une grande partie de la valeur des systèmes qu’ils transforment, mais également à contrôler ces mêmes systèmes, mettant en cause l’indépendance des autres pays.
Vladimir Poutine a quant à lui affirmé que celui qui deviendra le leader dans ce domaine sera le maître du monde
Une politique économique articulée autour de la donnée
Les mastodontes actuels de l’intelligence artificielle (États-Unis et Chine) et les pays émergents de la discipline (Israël, Canada et RoyaumeUni notamment) se développent ou se sont développés sur des modèles parfois radicalement différents.
Les données sont généralement le point de départ de toute stratégie en IA
Les données sont généralement le point de départ de toute stratégie en IA, car de leur disponibilité dépendent de nombreux usages et applications. Or les données bénéficient aujourd’hui majoritairement à une poignée de très grands acteurs. Ce n’est qu’au prix d’un plus grand accès et d’une meilleure circulation de ces données, pour en faire bénéficier les pouvoirs publics, mais aussi les acteurs économiques plus petits et la recherche publique, qu’il sera possible de rééquilibrer les rapports de forces. La puissance publique doit pour cela amorcer de nouveaux modes de production, de collaboration et de gouvernance sur les données, par la constitution de « communs de la donnée ». Cela devra passer par une incitation des acteurs économiques au partage et à la mutualisation de leurs données, l’État pouvant ici jouer un rôle de tiers de confiance. Dans certains cas, la puissance publique pourrait imposer l’ouverture s’agissant de certaines données d’intérêt général.
La puissance publique doit se donner les moyens matériels et humains d’intégrer l’IA à la conduite de ses politiques publiques, à la fois dans une perspective de modernisation et par souci d’exemplarité. Cette transformation va inévitablement prendre du temps et la maturité des différents ministères et administrations sur l’IA est très inégale. C’est pourquoi il est nécessaire d’installer un coordinateur interministériel dédié à la mise en œuvre de cette stratégie. Celui-ci pourra s’appuyer sur un pôle mutualisé de compétences, constitué d’une trentaine d’agents et chargé de conduire des missions de conseil auprès des administrations.
Les Wathinotes sont soit des résumés de publications sélectionnées par WATHI, conformes aux résumés originaux, soit des versions modifiées des résumés originaux, soit des extraits choisis par WATHI compte tenu de leur pertinence par rapport au thème du Débat. Lorsque les publications et leurs résumés ne sont disponibles qu’en français ou en anglais, WATHI se charge de la traduction des extraits choisis dans l’autre langue. Toutes les Wathinotes renvoient aux publications originales et intégrales qui ne sont pas hébergées par le site de WATHI, et sont destinées à promouvoir la lecture de ces documents, fruit du travail de recherche d’universitaires et d’experts.
The Wathinotes are either original abstracts of publications selected by WATHI, modified original summaries or publication quotes selected for their relevance for the theme of the Debate. When publications and abstracts are only available either in French or in English, the translation is done by WATHI. All the Wathinotes link to the original and integral publications that are not hosted on the WATHI website. WATHI participates to the promotion of these documents that have been written by university professors and experts.